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Automated Analysis of Changes in Privacy Policies: A 
Structured Self-Attentive Sentence Embedding 

Approach 
ABSTRACT 

The increasing societal concern for consumer information privacy has led to the 

enforcement of new global privacy regulations such as the EU General Data Protection 

Regulation (GDPR) in 2018 and the California Consumer Privacy Act (CCPA) in 2020. 

Increasingly, there is a need to evaluate how companies revise their privacy policies 

corresponding to regulations and whether they improve the protection of users’ information. 

However, prevailing privacy policy analysis and IS information privacy studies mainly employ 

manual analysis or behavioral/economic methods that lack scalability. This study adopts the 

computational design science paradigm to extend a deep learning-based Structured Self-Attentive 

Sentence Embedding (SSASE) approach to measure privacy policy evolution quantitatively. The 

proposed Self-Attentive Annotation System (SAAS) can leverage differentiating attention heads to 

improve the performance of multi-label data practice annotation tasks, which can facilitate data 

practice category-level privacy policy evolution analysis. We rigorously evaluate the proposed 

approach against state-of-the-art machine learning and deep learning benchmark methods on a 

well-established privacy policy dataset. We also demonstrate its practical utility with an in-depth 

case study of GDPR’s impact on Amazon’s privacy policies. Beyond demonstrating the managerial 

and practical implications, we discuss several design principles that can guide future design 

science-based e-commerce, health, and privacy applications. 

Keywords: privacy policy, structured self-attentive sentence embedding, deep learning, GDPR, 

privacy analytics, computational design science  
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Automated Analysis of Changes in Privacy Policies: A 
Structured Self-Attentive Sentence Embedding 

Approach 
INTRODUCTION 

The rapid proliferation of e-commerce, social media, and other web services has enabled 

an unprecedented number of consumers to share large quantities of personal information on the 

Internet. As a result, consumer information privacy has rapidly emerged as a major societal issue 

(Kokolakis 2017). Increasing concern over how companies maintain the information privacy of 

their consumers has led to the development and enforcement of global privacy regulations such as 

the EU General Data Protection Regulation (GDPR) in 2018 and the California Consumer Privacy 

Act (CCPA) in 2020. Each privacy regulation stipulates how companies control their customer’s 

personal information. Companies that violate regulations can incur significant financial fines and 

lose their reputation. Table 1 summarizes recent major instances of companies violating GDPR. 

Events are summarized based on the occurrence date, company name, industry type, country the 

company is located in, the fine incurred, and the nature of the violation. 

The scope, scale, and far-reaching implications of emerging global privacy regulations 

have motivated many companies to evaluate how details about their data practices (i.e., collecting, 

Table 1. Selected Recent Cases of GDPR Violations  
Date Company Industry Type Country Fine Violation 
2020.3 Google Search Engine Sweden $8M Right to be forgotten 
2020.3 The Royal Dutch Lawn 

Tennis Association 
Sports Netherlands $560K  Third Party Sharing/Consent 

2020.1 DSG Retail UK $580K  Safeguards 
2019.11 Deutsche Wohnen Property Germany $15K Right to be forgotten 
2019.10 Facebook Social Media UK $582k Third Party Sharing/Consent 
2019.8 Morele.net Retail Poland $689K Safeguards 
2019.7 Life at Parliament View Ltd Estate UK $92K Safeguards 
2019.7 British Airways Airline UK $230M  Safeguards 
2019.7 Unicredit Bank Banking Romania $137K  Safeguards 
2019.6 EE Telco UK $116K  Consent 
2019.1 Google Search Engine France $57M Transparency 
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processing, storing, sharing, and protecting customer data) are presented in their privacy policies. 

Increasingly, legislators, regulators, and researchers are carefully reviewing privacy policies pre- 

and post-GDPR to ascertain how a company complies with the new regulations (i.e., privacy policy 

evolution). However, many privacy policies have grown in length and become more difficult to 

comprehend after a regulation (Amos et al. 2021; Degeling et al. 2019; Linden et al. 2020). In 

Figure 1, we present Google’s privacy policy pre-GDPR (February 25, 2015) and post-GDPR 

(January 22, 2019) to illustrate how the privacy policy grew in length and complexity. 

 

 

Figure 1. Google’s Privacy Policy Before (Top) and After (Bottom) GDPR  

The “Accessing and updating your personal information” section in Google’s pre-PGDR 

privacy policy contained sentences that exceeded 30 words. Following the implementation of 

GDPR, the “Exporting, removing & deleting your information” section in the post-GDPR privacy 

policy contained legalistic or jargon-laden phrases that require college reading level to 

comprehend (Gluck et al. 2019). These characteristics can make tasks such as compliance checking 

non-trivial and challenging for regulators, companies, and other interested stakeholders 
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(Reidenberg et al. 2015). Consequently, there is a significant need to identify how the 

characteristics of privacy policies change (i.e., evolve) after a new regulation is implemented. 

Despite widespread interest in identifying how privacy policies evolve due to regulatory 

demands, prevailing approaches use manual analysis to identify key differences (Degeling et al. 

2019; Zaeem and Barber 2017). Such approaches are labor-intensive, time-consuming, and may 

be error-prone due to lengthy texts with confusing phrases (Gluck et al. 2019; Jain et al. 2016). 

While Information Systems (IS) scholars are uniquely positioned to analyze the text characteristics 

of privacy policies to identify how they evolve, prevailing IS privacy literature has focused on 

privacy concerns, risks, and controls from behavioral and economic perspectives. Methods within 

these paradigms were not designed to analyze the rich text within privacy policies. Consequently, 

a novel Information Technology (IT) artifact equipped with advanced Machine Learning (ML) and 

Deep Learning (DL) methods for text analytics is needed to identify how privacy policies change 

after a regulation is implemented.  

In this study, we adopted the computational design science paradigm to design, develop, 

and evaluate a privacy policy evolution analytics framework that automatically analyzes long and 

complex privacy policy texts to help identify what text content changed after a regulation has been 

implemented. At the heart of this framework stands a novel DL-based Self-Attentive Annotation 

System (SAAS) that draws upon an emerging Structured Self-Attentive Sentence Embedding 

(SSASE) and attention mechanisms. SAAS automatically annotates segments in privacy policies 

with their data practice categories corresponding to prevailing privacy regulations (e.g., GDPR) 

and visualizes key changes before and after a regulation is implemented. We rigorously evaluated 

SAAS against prevailing methods in automated privacy policy analysis literature and benchmark 

ML and DL algorithms with a series of experiments. We demonstrated the practical utility of our 



5 
 

proposed framework with an in-depth case study on Amazon’s pre- and post-GDPR privacy 

policies. Apart from academic and practical contributions to IS privacy analytics, our proposed 

SAAS follows several key design principles that can guide the design of future IT artifacts for e-

commerce, social media analytics, and health analytics applications. 

The remainder of this paper is organized as follows. First, we review literature related to 

IS information privacy research and computational design science guidelines, privacy policy 

analysis, SSASE, and attention mechanisms. Second, we identify research gaps within extant 

literature and pose research questions for study. Third, we detail the proposed privacy policy 

evolution analytics framework and its constituent components. Fourth, we present the results of 

our experiments and case study. Fifth, we discuss this study’s contributions to the IS knowledge 

base and selected managerial implications. Finally, we summarize promising directions for future 

research and conclude this study. 

LITERATURE REVIEW 

We review four areas of literature to ground our research. First, we review recent IS 

information privacy research and the computational design science paradigm to guide the 

development of our proposed DL-based privacy policy evolution analytics framework. Second, 

we review privacy policy analysis literature to identify prevailing methods for automatically 

detecting the changes in companies’ privacy policies. Third, we review SSASE to understand how 

a prevailing DL-based text analytics technique could be leveraged for automated privacy policy 

evolution analytics. Finally, attention mechanisms are examined to identify approaches that can 

dynamically weigh input features from privacy policies to enhance SSASE performance. 

IS Information Privacy Research and the Computational Design Science Guidelines  
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Information privacy is fundamentally defined as “the ability of the individual to control 

personally information about one’s self” (Stone et al. 1983). The explosive growth of personal 

information disclosure on the Internet has motivated many IS scholars to carefully examine 

varying aspects of information privacy. To date, IS scholars have leveraged behavioral, economic, 

and design science paradigms to make remarkable progress in four major categories of information 

privacy research: concern, control, risk, and preservation. In Table 2, we summarize the focus, IS 

paradigm, and the analytical method(s) leveraged in recent selected IS information privacy studies.  

 
Research examining privacy concerns, controls, and risks primarily employed behavioral 

theories or econometric models to investigate the impact of privacy concerns on user or 

Table 2. Summary of Selected Major Recent IS Information Privacy Literature 
Category Year Author(s) Focus IS Paradigm Analytical 

Method(s) 
Privacy 
Concern 

2019 Wunderlich 
et al.  

The impact of privacy concern on Internet 
of Things (IoT) adoption 

Behavioral Qualitative Coding, 
Hierarchical 
Regression 

2019 Buckman et 
al. 

Factors affecting users’ valuation of their 
personal information 

Behavioral ANCOVA, Tobit 
Regression 

2019 Crossler 
and 
Bélanger 

Factors affecting the use of privacy 
settings on smartphones 

Behavioral Structural Equation 
Model 

2018 Adjerid et al. Examining rational cognition and 
heuristics of privacy decision making 

Behavioral Linear Regression 

2018 Gopal et al. Users’ privacy concerns on companies’ 
third party sharing strategies 

Economic Econometric model 

2017 Breward et 
al. 

The impact of privacy and security 
concerns on controversial IT adoption 

Behavioral Qualitative Coding,  
Structural Equation 
Model 

2017 Koh et al. The impact of privacy cost on voluntary 
profiling in e-commerce platforms 

Economic Econometric model 

Privacy 
Control 

2018 Cao et al. The impact of peer disclosure and related 
policies on online community participation 

Economic Econometric model 

2018 Gal-Or et al. The impact of targeted ads and privacy 
controls on users’ selection of platforms 

Economic  Econometric model 

2018 Heimbach 
and Hinz 

The impact of content provider platforms’ 
sharing mechanism leveraged different 
privacy protection measures on content 
sharing in social media 

Behavioral Logistic model, 
Poisson Regression 

2016 Cavusoglu 
et al. 

The impact of privacy control options on 
disclosure behavior on social media 

Economic Poisson Regression 

Privacy Risk 2019 Kim and 
Kwon 

The impact of EHRs and meaningful use 
on the risk of patient information breaches 

Economic Cox Proportional 
Hazards Model 

Privacy 
Preservation 

2017 Li and Qin A novel privacy-preserving approach for 
unstructured health information 

Design 
Science 

Text Mining 

2016 Menon and 
Sarkar 

Sanitizing sensitive information in large 
transactional databases 

Design 
Science 

Linear Programming 
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organization decision-making, explore how various privacy controls influence users’ behaviors, or 

examine the factors that affect privacy risk (Cao et al. 2018; Kim and Kwon 2019; Wunderlich et 

al. 2019). Despite their important contributions, the analytical methods (e.g., regression models) 

employed in these studies were not designed to analyze lengthy and unstructured privacy policy 

text. Consequently, a novel IT artifact designed to identify privacy policy evolution requires a 

principled approach. The design science paradigm offers prescriptive guidelines on how to design, 

develop, and evaluate novel IT artifacts (e.g., constructs, models, methods, and instantiations) for 

critical societal applications (Hevner et al. 2004). Four genres of design science exist (Rai 2017): 

computational, optimization, economics, and representation. Among the four, the computational 

genre is the most relevant for developing novel computational approaches, frameworks, models, 

and algorithms for advanced text analytics research. 

IT artifacts developed under the lens of the computational design science paradigm 

generally follow three guidelines (Rai 2017). First, the artifact’s design can be inspired by key 

domain requirements or characteristics when a strong underlying theory is lacking. For example, 

Li and Qin (2017) in which unique data characteristics guided the development of a novel text 

analytics framework that incorporated carefully constructed feature representations and algorithms 

to anonymize medical records (Li and Qin 2017). Second, the artifact’s novelty is demonstrated 

by evaluating its technical performance against state-of-the-art approaches via well-established 

quantitative metrics (e.g., precision, F1). Finally, the artifact should contribute back to the IS 

knowledge base to help guide future related research. Contributions can include situated 

implementations (e.g., processes, software, etc.) and/or nascent design theory in the form of design 

principles. Properly executing each guideline requires a strong understanding of the application 

space for which the artifact is being developed. In this study, this requires reviewing key data 
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characteristics of privacy policies and examining how advanced text analytics techniques can be 

developed to analyze them. Therefore, we review extant privacy policy analysis literature next. 

Privacy Policy Analysis 

A privacy policy is a legal contract binding a company in collecting, processing, sharing, 

and storing users’ personal information (Antón et al. 2007). Privacy regulations (e.g., GDPR, 

CCPA) require companies to disclose their data practices in their privacy policies in a transparent 

manner to help users (e.g., customers) understand their rights to control their data. In general, ten 

major categories of data practices exist (Wilson et al. 2016). In Table 3, we describe each data 

practice category and specify selected recent regulations that require companies to disclose the 

category in their privacy policies.  

 
First Party Collection (FP), Third Party Sharing/Collection (TP), Data Retention (DR), and 

Data Security (DS) detail what, how, and why first parties and third parties collect, process, store, 

share, and protect customer data. User Choice/Control (UCC), User Access, Edit, and Deletion 

(UAED), and Do Not Track (DNT) pertain to a user’s rights. International & Specific Audiences 

are data practices that pertain only to a specific region or user group. A privacy policy often 

contains multiple segments (i.e., a set of consecutive and semantically coherent sentences) that 

Table 3. Summary of Key Data Practice Categories 
# Category Description Regulations 
1 First Party Collection (FP) What data is collected and how and why a company 

collects data 
GDPR, CCPA 

2 Third Party Sharing/Collection 
(TP) 

How a company shares data with third parties GDPR, CCPA 

3 User Choice/Control (UCC) Choices and control options available for users GDPR, CCPA 
4 User Access, Edit, and Deletion 

(UAED) 
How users may access, edit, or delete their data GDPR, CCPA 

5 Data Retention (DR) How long user information is stored GDPR, CCPA 
6 Data Security (DS) How user information is protected GDPR, CCPA 
7 Policy Change (PC) How users will be informed about changes to the privacy 

policy 
GDPR, CCPA 

8 Do Not Track (DNT) If and how Do Not Track signals for online tracking and 
advertising are honored 

CCPA 

9 International & Specific 
Audiences (ISA) 

Practices that pertain only to one specific user group HIPPA, COPPA, 
etc. 

10 Other Contact information, introduction, etc. - 
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present information data practice categories (Wilson et al. 2016). Although recent privacy 

regulations clearly specify the requirements for information disclosure, there is no standard or 

recommended format for companies to follow when presenting their privacy policies 

(Alabduljabbar et al. 2021). As a result, companies often provide information for a specific data 

practice category in separate segments throughout their privacy policy. Moreover, companies may 

often use one segment to explain multiple data practice categories. We present a sample segment 

in Google’s privacy policy that pertains to two categories in Figure 2. 

 

Figure 2. A Sample Segment in Google’s Privacy Policy 
 

In the “Cookies and anonymous identifiers” section of Google’s privacy policy, the first 

segment contains details about FP (indicated by the word “We”), TP (indicated by the words “our 

partners”), and content pertaining to both FP and TP (indicated by the phrase “use various 

technologies to collect and store”). Dispersing and mixing data practice information in segments 

increases the difficulty of analyzing privacy policies (Degeling et al. 2019; Linden et al. 2020). 

However, privacy policies are currently the primary instruments stakeholders (e.g., consumers, 

regulators, companies) rely on to understand a companies’ data practices (Amos et al. 2021). 

Therefore, we review selected recent privacy policy analysis research in Table 4. The summary is 

organized based on the focus of the study, the dataset examined, the corresponding privacy 

regulations, and the methodology employed. We also indicate whether a visualization system or 

interface is provided for end-users to examine the results of the analysis. 
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Table 4. Summary of Selected Recent Privacy Policy Analysis Literature 
Year Author Focus Dataset Regulation** Methodology 

Source* # of 
Policies 

Time 
Periods  

Manual 
Analysis 

Automated Analysis Visualization 
Component Readability 

Metrics 
Keyword 
Searching 

Descriptive 
Statistics 

Machine 
Learning*** 

 

2021 Amos et al. Comparative 
Study 

English 
websites 

1M 22 GDPR No Yes Yes Yes No Bar Chart, 
Line Chart 

2021 Qamar et 
al. 

Compliance 
Detection 

OPP-115 115 1 GDPR, PDPA No No No No BOW + LR, 
SVM, BERT 

Bar Chart, 
Word Cloud 

2021 Zaeem & 
Barber 

Comparative 
Study 

OPP-115 115 1 No No No No No CNN, NB Bar Chart 

2020 Akanfe et 
al. 

Privacy Risk 
Assessment 

Mobile wallets 
and 
remittance 
apps 

353 1 GDPR No No Yes No No Scatter plot 

2020 Akanfe et 
al. 

Privacy Risk 
Assessment 

Mobile wallets 
and 
remittance 
apps 

230 1 GDPR No No Yes No BOW, LDA Scatter plot 

2020 Linden et 
al. 

Comparative 
Study 

OPP-115 115 2 GDPR Yes Yes Yes Yes CNN Bar Chart, 
Line Chart 

2019 Andow et 
al. 

Compliance 
Detection 

Apps from 
Google Play 
Store 

11K 1 No No No Yes No Parse Tree + 
Rule-based  

Bar Chart, 
Line Chart, 
Heatmap 

2019 Chang et 
al. 

Privacy 
Settings 
Assistant 

OPP-115 115 1 GDPR No No No No CNN, RF Bar Chart 

2019 Degeling et 
al. 

Comparative 
Study 

EU websites 112K 12 GDPR Yes No Yes Yes No Bar Chart, 
Line Chart 

2019 Fawaz et 
al. 

Comparative 
Study, Risk 
Assessment, 
Privacy 
Settings 
Assistant 

OPP-115 115 2 GDPR No No No No CNN Bar Chart, 
Line Chart,  

2019 Nejad et al.  Privacy Risk 
Assessment 

OPP-115 115 1 GDPR No No Yes No Did not 
specified 

No 

2019 Zimmeck et 
al. 

Compliance 
Detection 

Apps from 
Google Play 
Store 

1M 1 GDPR, 
COPPA, 
CalOPPA 

No No No Yes BOW + SVM Bar Chart, 
Line Chart, 
Pie Chart, 
Heatmap 

2018 Harkous et 
al. 

QA System OPP-115 115 1 No No No No No CNN Bar Chart 
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Note: 
*NYSE, Nasdaq, and AMEX: Stock Exchange Websites; OPP-115: Online Privacy Policies, set of 115 
**CalOPPA: California Online Privacy Protection Act; COPPA: Children’s Online Privacy Protection Act; DOPPA: Delaware Online Privacy and Protection Act; FIPPs: 
Federal Trade Commission’s Fair Information Practice Principles; GLBA: The Gramm-Leach-Bliley Act; HIPAA: Health Insurance Portability and Accountability Act; 
PDPA: Personal Data Protection Act.  
***BERT: Bidirectional Encoder Representations from Transformers; BOW: Bag-of-Words; CNN: Convolutional Neural Network; DT: Decision Tree; HMM: Hidden 
Markov Model; KNN: k-Nearest Neighbors; LDA: Latent Dirichlet Allocation; LR: Logistic Regression; NB: Naïve Bayes; RF: Random Forest; RNN: Recurrent Neural 
Network; SVM: Support Vector Machine; TF-IDF: Term Frequency-Inverse Document Frequency.  

2018 Tesfay et 
al. 

Privacy Risk 
Assessment 

EU websites 45 1 GDPR No No No No BOW + NB, 
SVM, DT, 
RF 

No 

2018 Story et al. Comparative 
Study 

Apps from 
Google Play 
Store 

3M 3 CalOPPA, 
DOPPA, 
FIPPs 

No No No Yes No Bar Chart 

2017 Zaeem and 
Barber  

Comparative 
Study 

NYSE, 
Nasdaq, and 
AMEX 

600 1 FIPPs, 
COPPA 

Yes No No No No Bar Chart 

2018 Oltramari et 
al. 

QA System OPP-115 115 1 No No No No No Rule-based  Segment 
Coloring 

2017 Sathyendra 
et al. 

Privacy 
Settings 
Assistant 

OPP-115 115 1 FIPPs No No Yes No BOW, LDA, 
Parse Tree + 
LR 

No 

2016 Bhatia et al.  Compliance 
Detection 

US websites 15 1 No No No No No Parse Tree No 

2016 Sathyendra 
et al. 

Privacy 
Settings 
Assistant 

OPP-115 115 1 FIPPs No No Yes No BOW + LR, 
SVM, RF, 
NB, KNN 

No 

2007 Antón et al. Comparative 
Study 

Health 
Institutions 

24 1 HIPAA Yes Yes No No No No 

2004 Anton et al. Comparative 
Study 

Financial 
Institutions 

40 1 GLBA Yes Yes No No No No 
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Major themes of extant privacy policy analysis literature include compliance detection 

(Andow et al. 2019; Qamar et al. 2021), privacy risk assessment (Akanfe et al. 2020a; Fawaz et 

al. 2019), privacy setting assistants (Chang et al. 2019; Sathyendra et al. 2016), and comparative 

analysis (Amos et al. 2021; Linden et al. 2020; Qamar et al. 2021). The prevailing dataset for 

conducting comparative analysis of privacy policies (the main focus of our study) is “Online 

Privacy Policies, set of 115 (OPP-115)" (Harkous et al. 2018). OPP-115 is a labeled privacy policy 

dataset developed by the Usable Privacy Policy Project (UPPP) from Carnegie Mellon University 

(CMU) that consists of 115 English privacy policies published between 2003 and 2015 from well-

known, highly ranked websites based on Google trends across 15 sectors (as defined by 

DMOZ.org) (Wilson et al. 2016). Each privacy policy was manually partitioned into paragraph-

length segments and assigned one or more data practice category labels by three law school 

students. Although the annotation scheme of OPP-115 is agnostic to particular laws, it reflects 

essential data practice categories provisioned by privacy regulations (e.g., GDPR) (Leone and Di 

Caro 2020; Poplavska et al. 2020).  

With regards to methodology, many prior studies relied on manual analysis, keyword 

searching, or descriptive statistics (Degeling et al. 2019; Story et al. 2018; Zaeem and Barber 

2017). Since privacy policies are long documents with no standard format, manual analysis can 

result in incomplete content extraction and have limited scalability. Studies employing automated 

techniques have trained ML algorithms (e.g., SVM, RF) on OPP-115 to classify segments in 

privacy policies into one or more data practice categories (i.e., multi-label classification) (Harkous 

et al. 2018). The goal of conducting classification in this fashion is to annotate each segment with 

one or more labels (i.e., data practice category) to help facilitate subsequent targeted analyses about 

specific components of a privacy policy (e.g., identify how a specific data practice category 
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changed). However, conventional ML algorithms rely on manually engineered features such as 

parse trees and Bag-of-Words (BOW) that assume segments in the same data practice category 

share similar syntactic structures and share similar word distributions, respectively. However, 

segments in the same data practice category can have diverse sentence structures, lengths, and 

word choice. 

Given the issues with conventional ML-based analyses, scholars have begun to adopt the 

DL-based CNN that applies multiple layers of non-linear transformations to automatically learn 

features from input text without manual feature engineering (Harkous et al. 2018). While attaining 

superior performance over their ML counterparts, CNN-based methods only capture short 

sequential word dependencies and can miss long sequences of text in privacy policies. In addition, 

CNNs are black-box models wherein end-users cannot identify the most informative text features 

(via feature weights or visualizations) that led to the classifier’s final decision. Taken together, 

these limitations necessitate an alternative DL-based approach that can capture both short and long 

sequential word dependencies to generate better segment representation for data practice 

annotation as well as output weights for input features. Therefore, we review Structured Self-

Attentive Sentence Embedding (SSASE) as a nascent DL-based text classification model next. 

Structured Self-Attentive Sentence Embedding (SSASE) 

SSASE generates text representations for multi-class classification tasks based on a 

Bidirectional Long Short-Term Memory (Bi-LSTM) model with a multi-head self-attention 

mechanism (Lin et al. 2017). Bi-LSTM is a prevailing DL model often employed in text analytics 

tasks to capture sequential and contextual dependency information from text input. BiLSTMs have 

been shown to consistently outperform CNN-based methods in various text analytics tasks 

(Ebrahimi et al. Forthcoming; Samtani et al. Forthcoming). The multi-head self-attention 
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mechanism extracts the non-sequential global dependencies of the inputs that the conventional Bi-

LSTM does not capture. Each head emphasizes different words in the text input based on one or 

more specific semantic aspects such as rare words and word positions (Voita et al. 2020). Figure 

3 depicts the overall SSASE and its operations. 

 

Figure 3. Conceptual Schematic of SSASE (Adapted from Lin et al. 2017) 

The Bi-LSTM component of SSASE processes word sequences in both forward and 

backward directions. Each direction generates a “directional” hidden state ℎ𝚤𝚤���⃗  (or ℎ𝚤𝚤�⃖��) based on the 

word embedding 𝑤𝑤𝑖𝑖 and the previous hidden state ℎ𝚤𝚤−1��������⃗  (or ℎ𝚤𝚤+1�⃖�������). By concatenating ℎ𝚤𝚤���⃗  and ℎ𝚤𝚤�⃖�� from 

the forward and backward directions, ℎ𝑖𝑖 = �ℎ𝚤𝚤�⃖��  ℎ𝚤𝚤���⃗ �
𝑇𝑇
 represents a more comprehensive summary of 

the current hidden state. The multi-head self-attention mechanism takes the Bi-LSTM hidden states 

𝐇𝐇 = (ℎ1,ℎ2, … ℎ𝑛𝑛) as input and learns the multi-head self-attention weight matrix 𝐴𝐴 generated by: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊𝑠𝑠2 𝑠𝑠𝑠𝑠𝑡𝑡ℎ(𝑊𝑊𝑠𝑠1𝐻𝐻𝑇𝑇)), where 𝐻𝐻𝑇𝑇 is a transposed hidden state matrix containing semantic 

information captured by Bi-LSTM. 𝑊𝑊𝑠𝑠1 and 𝑊𝑊𝑠𝑠2 are two trainable weight matrices. 𝑊𝑊𝑆𝑆1 generates 

linear combinations of the hidden states to capture the global correlations between terms within 
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the input sequence (e.g., meaningful phrases, word correspondence). 𝑊𝑊𝑆𝑆2  weighs these 

correlations differently to extract disparate semantic aspects of the input sequence. Thus, the multi-

head self-attention weight matrix 𝐴𝐴 summarizes “how much attention” should be paid to each word 

in the input based on its contributions to the final output prediction. The weights assigned to each 

word in each head learned by the multi-head self-attention mechanism can be visualized to 

pinpoint which parts of the text are encoded in the matrix text embedding. Each column in 𝐴𝐴 

corresponds to one word, while each row (head) captures salient word correlations that potentially 

represent a latent aspect of the text. A penalty term P in the loss function is often used to diversify 

attention heads and avoid learning duplicated latent aspects: P = ‖𝐴𝐴𝐴𝐴𝑇𝑇 − 𝐼𝐼‖𝐹𝐹2 , where 𝐼𝐼  is the 

identity matrix and ‖∙‖𝐹𝐹 is the Frobenius norm. The penalty term reaches the minimum when 𝐴𝐴 is 

orthogonal (i.e., each head does not correlate). Matrix text embedding M is the dot product of 𝐴𝐴 

and 𝐻𝐻, representing important aspects of the text. M is then flattened into a vector for a classifier 

composed of a fully connected layer and a Softmax layer, which indicates how information 

extracted in each aspect can contribute to the multi-class classification.  

SSASE and its variants have demonstrated their effectiveness in multi-class text 

classification applications, including grouping news articles (Tao et al. 2019), categorizing health 

records (Sousa et al. 2018), and analyzing social media sentiments (Zhao et al. 2018). However, 

there is limited work examining its performance in multi-label classification tasks like data practice 

segment annotation (needed for comparing privacy policies pre- and post-regulation 

implementation). In multi-label classification tasks, selected heads of the input data should be 

emphasized more than others. For example, FP and TP may have shared heads such as “user 

information.” However, they also have differentiating heads that help delineate between practices. 

Examples include “we collect your information for …” in FP and “we share your information with 
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…” in TP. Improving multi-label prediction performance can be contingent upon reducing the 

impact of the shared heads and emphasizing key differentiating heads. Therefore, extending the 

multi-head attention mechanism in SSASE to differentiate head importance for effective data 

practice segment annotation is required. We next review attention mechanisms to ground the 

proposed approach for enhancing SSASE. 

Attention Mechanisms 

Attention mechanisms aim to identify how input features affect model performance (Du et 

al. 2019). Formally, attention mechanisms operate by mapping a query vector 𝑄𝑄 and a set of key 

vector-value vector pairs (𝐾𝐾,𝑉𝑉) to an output vector 𝑂𝑂 (Vaswani et al. 2017). 𝑄𝑄 can be considered 

as a representation of focus of interest and 𝐾𝐾 is a representation of the characteristics of the input. 

𝑂𝑂 is computed as a weighted 𝑉𝑉 , where weights are alignment scores calculated based on the 

relationship (e.g., similarity) between 𝑄𝑄 and 𝐾𝐾. If elements in 𝐾𝐾 are closely related to 𝑄𝑄, higher 

alignment scores are assigned.  

Attention mechanisms can be categorized into two major groups: general attention and self-

attention (Du et al. 2019). The former calculates the alignment score between 𝑄𝑄 and 𝐾𝐾, and the 

latter calculates the alignment score within the elements in 𝐾𝐾  (i.e., 𝑄𝑄 = 𝐾𝐾 ). Self-attention 

mechanisms have been extensively incorporated in prevailing sequence models to capture global 

feature dependencies for generating high-quality text representations for neural machine 

translation, sentiment analysis, and other applications (Letarte et al. 2018; Vaswani et al. 2017). 

Evaluation of attention mechanisms is typically executed by comparing the model with the 

attention mechanism against the one without the attention mechanism on the ground-truth dataset 

(Samtani et al. Forthcoming). 
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SSASE leverages the self-attention mechanism to capture each word’s contributions to a 

segment’s semantic. In addition, since data practice segments are usually long and cover diverse 

semantic aspects, single-head self-attention may miss certain aspects. SSASE leverages multi-head 

self-attention to jointly learned weights from different vector subspaces that focus on different 

semantic aspects. However, not all heads are equally important. Recent studies have shown that 

only a small subset of heads play important and linguistically interpretable roles in overall model 

performance (Voita et al. 2020). In data practice segment annotation, the importance of each head 

depends not only on each data practice category but also on the relationship between categories 

(i.e., shared and differentiating information). Existing studies considered the average or the 

maximum of weights over attention heads, which do not explicitly consider the varying importance 

of different heads in multi-label classification (Tang et al. 2019; Voita et al. 2018). Therefore, 

there is a need for a new approach to distinguish the importance of attention heads. However, how 

to adapt the self-attention mechanism to determine the importance of each attention head to 

produce a better representation of each data practice segment than the conventional self-attention 

mechanism in SSASE requires further investigation. 

RESEARCH GAPS AND QUESTIONS 

We identify several key research gaps within extant literature. IS scholars have made 

significant progress in multiple areas of information privacy research. However, the prevailing 

behavioral and economic methodologies adopted in prior IS literature are not intended to operate 

on the rich and complex text of privacy policies, which are served as the main instruments in 

conveying companies’ data practices. As a result, little work has identified how data practices in 

companies’ privacy policies have changed after new regulations have been implemented. Since it 

is critical for companies to assess regulatory compliance and for legislators to examine the impact 
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of privacy regulations on companies’ privacy policies, there is a need for an automated approach 

to annotate segments in privacy policies to facilitate privacy policy evolution analysis. However, 

many past privacy policy analysis studies rely on manual analysis or traditional ML approaches 

which require manual feature engineering. Both approaches are labor-intensive and not viable for 

analyzing evolving application domains (e.g., privacy policy changes). While DL-based text 

analytics offers a promising approach for automatically extracting salient features from text data 

at scale, the existing methods cannot capture long sequential word dependencies, a common data 

characteristic in data practice segments in privacy policies. In addition, they cannot generate 

representations that can be visualized for potential end-users (e.g., regulators, companies, and 

privacy researchers) to understand the key phrases and concepts contained within each data 

practice category. Although emerging text analytics approaches such as SSASE can capture long 

sequential word dependencies and enable visualization to help stakeholders analyze privacy 

policies, they cannot identify key differentiating aspects for multi-label classification in analyzing 

privacy policy segments. Based on these research gaps, we post the following research questions 

for study: 

• How can the nascent multi-head self-attention text analytics approach be enhanced to 

identify key differentiating semantic aspects in data practice segments to further improve 

the performance of multi-label data practice segment annotation? 

• How can the enhanced automated data practice segment annotation system help analyze 

privacy policy evolution? 



19 
 

PROPOSED PRIVACY POLICY EVOLUTION ANALYTICS 

FRAMEWORK  

To address the proposed research questions, we propose a novel DL-based privacy policy 

evolution analytics framework. We present the proposed framework in Figure 4. The proposed 

framework consists of four components: (1) Privacy Policy Testbed, (2) Self-Attentive Annotation 

System (SAAS) for Data Practice Segment Annotation, (3) Benchmark Experiments, and (4) 

Regulation Impact Detection. The following sub-sections further describe each component.  

Privacy Policy Testbed 

We adopted OPP-115 (Wilson et al. 2016) as our privacy policy analysis testbed. OPP-115 

is suitable for training an automated privacy policy analytics system because the legal assumptions 

made in the corpus annotation scheme are consistent with the transparency principle in recent 

privacy regulations (e.g., GDPR and CCPA) (Leone and Di Caro 2020; Poplavska et al. 2020). 

Although privacy policies in OPP-115 were collected before the release of several recent privacy 

regulations, existing data practice segment annotation systems trained on OPP-115 have been 

extensively used to annotate unlabeled privacy policies published after regulations (e.g., GDPR 

and CCPA) were enforced (Linden et al. 2020). OPP-115 contains 3,792 segments manually 

segmented from 115 English privacy policies of well-known websites. Each segment was 

 

Figure 4.  Proposed Privacy Policy Evolution Analytics Framework  



20 
 

annotated with one or more data practice labels from ten categories. Consistent with previous 

studies, we retained data practice category labels for each segment when two or more annotators 

agreed on labels (Harkous et al. 2018). Forty-three segments were removed due to the lack of label 

agreement, resulting in 3,749 data practice segments that contain at least one data practice category 

label. 

Self-Attentive Annotation System (SAAS) for Data Practice Segment Annotation 

Recognizing the key limitations of the conventional multi-head self-attention embedding 

in the SSASE pertaining to data practice segment annotation, we propose a novel SAAS with three 

functions, each accounting for some essential domain requirements. First, SAAS automatically 

annotates privacy policy segments as one or more data practice categories (i.e., multi-label 

classification). This helps facilitate data practice category-level privacy policy evolution analysis. 

Second, the proposed SAAS can leverage differentiating attention heads to improve the 

performance of multi-label data practice annotation tasks. Third, it helps to visualize important 

text features that contribute the most to the semantics in a word sequence. Taken together, these 

three functions can help stakeholders more efficiently and effectively examine whether privacy 

policies comply with new regulations without reading large amounts of text. 

SAAS is comprised of a novel Row-Wise Self-Attentive Sentence Embedding (RWSASE) 

model and a Multi-Label Classifier. RWSASE extends SSASE and weighs differentiating heads 

extracted from the text to facilitate multi-label classification. The Multi-Label Classifier classifies 

the learned representations into one or more data practice categories. Figure 5 compares SSASE 

and the proposed SAAS. Our novelties are highlighted in red. The following sub-sections further 

summarize each key SAAS component.  

Conventional SSASE 
 

Proposed SAAS 
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Conventional SSASE Procedure 

1. Input: A Sequence of Words 
2. Bi-LSTM 
3. Attention Mechanism 
4. Matrix Sentence Embedding 
5. Multi-Class Classifier 
6. Output: One Class Label 

 

Proposed SAAS Procedure 
Row-Wise Self-Attentive Sentence Embedding 
(RWSASE): 

1. Input: Data Practice Segment 
2. Bi-GRU 
3. Attention Mechanism 
4. Matrix Sentence Embedding 
5. Row-Wise Attention Mechanism 

Multi-Label Classifier: 
6. Multi-Label Classifier 
7. Output: Binary Labels 

Figure 5. Illustration of Conventional SSASE and Proposed SAAS 

Row-Wise Self-Attentive Sentence Embedding (RWSASE) 

RWSASE builds upon the basic architecture of SSASE. It takes a data practice segment as 

input, where each word in the segment is represented by a word embedding. A Bi-GRU 

automatically extracts the forward and backward context information from the embedding 

sequence. Bi-GRU is a variant of Bi-LSTM, which streamlines the Bi-LSTM three-gate structure 

into two gates. As a result, Bi-GRU requires less parameters and can therefore converge faster than 

the Bi-LSTM. The multi-head self-attention mechanism learns from all hidden states the 

contributions of the words to the segment in every latent aspect as the multi-head self-attention 

weight matrix. The multi-head self-attention weight matrix is applied back to the hidden states to 

produce the matrix sentence embedding, a low-dimensional matrix representation of the segment 

that separately encodes semantics of different latent aspects. 
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In SSASE, the downstream task that uses the matrix sentence embedding is multi-class 

classification. A classifier calculates the probabilities of the input segments belonging to target 

categories, where the contributions of latent aspects in the matrix sentence embedding are 

correlated. The classifier assigns lower coefficients to the shared aspects (e.g., common words), as 

they are not as informative as other aspects. However, the downstream task in SAAS is multi-label 

classification, where multiple classifiers make decisions independently for each category. With 

SSASE, each classifier is unaware of aspects shared among categories and may assign higher 

coefficients to them, resulting in misclassification. In order to suppress these shared aspects before 

inputting them into the classifiers, we design a novel row-wise attention mechanism (i.e., 

RWSASE) to emphasize differentiating aspects in the matrix sentence embedding. Inspired by 

self-attention mechanisms in determining the importance of each word that contributes to the text 

semantic, the proposed row-wise attention mechanism learns the importance of each head in multi-

head attention that contributes to the segment semantic as follows: 

𝐴𝐴𝑅𝑅𝑅𝑅 = softmax(tanh(𝑊𝑊𝑅𝑅𝑅𝑅𝑀𝑀𝑇𝑇)), 

where 𝐴𝐴𝑅𝑅𝑅𝑅  is the row-wise attention weight vector, 𝑀𝑀𝑇𝑇  is the transposed matrix sentence 

embedding, and 𝑊𝑊𝑅𝑅𝑅𝑅  is the trainable weight vector. Each element in 𝐴𝐴𝑅𝑅𝑅𝑅  indicates the 

importance of each head to the decision process. Higher weights are assigned to differentiating 

heads as they contribute more to delineating output labels. 𝐴𝐴𝑅𝑅𝑅𝑅  is applied back to the matrix 

sentence embedding by 𝐴𝐴𝑅𝑅𝑅𝑅*𝑀𝑀 for the downstream multi-label task. 𝐴𝐴𝑅𝑅𝑅𝑅 is also applied back to 

the multi-head attention weight matrix. The weighted multi-head attention weight matrix can be 

visualized to highlight the critical text features in data practice segments. 

Multi-Label Classifier 
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A multi-label classifier contains 𝑘𝑘  independent binary classifiers, corresponding to the 

number of output labels (𝑘𝑘 = 10 in our study). Each classifier takes a flattened matrix sentence 

embedding weighted by row-wise attention weight vector as an input. Each classifier is composed 

of a fully connected layer and a Sigmoid layer. The Sigmoid function 𝜎𝜎(𝑠𝑠) = 1
1+𝑒𝑒−𝑥𝑥

 predicts the 

output 𝑦𝑦𝑖𝑖 ∈ {0,1}, where 𝑦𝑦𝑖𝑖 = 1 denotes that a segment belongs to the 𝑖𝑖-th data practice category, 

otherwise 𝑦𝑦𝑖𝑖 = 0. The final output of SAAS is a tuple 𝑌𝑌 = (𝑦𝑦1 ,𝑦𝑦2,  … ,𝑦𝑦𝑘𝑘) that aggregates the 

predictions of a data practice segment from each binary classifier. 

Benchmark Experiments 

Consistent with computational design science principles (Rai 2017) and DL literature, we 

evaluated the proposed SAAS with three benchmark experiments: (1) SAAS vs Conventional 

Machine Learning Models, (2) SAAS vs Prevailing Deep Learning Models, and (3) Ablation 

Analysis. We summarize each experiment, model category, and benchmark model in Table 5. 

Table 5. Summary of Benchmark Experiments 
Experiment Model Category Benchmark Models* References 
 

SAAS vs 
Conventional 
Machine 
Learning 
Models 

Paragraph Vector-based (Doc2Vec**): Sentence 
embedding is learned with a Continuous Bag of Words 
(CBOW) approach that predicts a missing word based 
on other words in the sentence. 

Doc2Vec + LR Wilson et al. 
2016 Doc2Vec + SVM 

Doc2Vec + RF Sathyendra et 
al. 2016 Doc2Vec + KNN 

Term Frequency-based (TF-IDF): Sentence 
embedding is learned based on term frequency 
divided by Inverse Document Frequency (IDF). 

TF-IDF + LR Mysore 
Sathyendra et 
al. 2017; 
Tesfay et al. 
2018; 
Zimmeck et al. 
2019  

TF-IDF + SVM 
TF-IDF + RF 
TF-IDF + NB 
TF-IDF + KNN 

SAAS vs 
Prevailing 
Deep 
Learning 
Models 

CNN-based: Text features are extracted through one 
convolutional layer and max pooling. Features are 
input into two dense layers for classification. 

CNN Harkous et al. 
2018 

Uni-directional RNN-based: Contextual information 
is captured through a uni-directional recurrent 
structure. Extracted features are pooled through max 
and mean operations. 

LSTM + Max Pooling Lai et al. 2015 
LSTM + Mean Pooling 
GRU + Max Pooling 
GRU + Mean Pooling 

Bi-directional RNN-based:  Contextual information is 
captured through a bi-directional recurrent structure. 
Extracted features are pooled through max and mean 
operations. 

Bi-LSTM + Max Pooling Lin et al. 2017 
Bi-LSTM + Mean Pooling 
Bi-GRU + Max Pooling 
Bi-GRU + Mean Pooling 

Attention-based:  A self-attention mechanism and bi-
directional recurrent structure learn a matrix sentence 
embedding. 

SSASE 
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*Note: Bi-: Bi-directional; CBOW: Continuous Bag-of-Words; CNN: Convolutional Neural Network; GRU: Gated 
Recurrent Unit; KNN: k-Nearest Neighbors; LR: Logistic Regression; LSTM: Long-Short Term Memory; MLP: Multi-
Layer Perceptron; NB: Naïve Bayes; RF: Random Forest; SVM: Support Vector Machine 
**Naïve Bayes does not work with Doc2Vec text representation because it requires positive numeric input.  

In Experiment 1, we compared SAAS against five conventional machine learning 

benchmark models commonly used in IS literature (Kitchens et al. 2018): Logistic Regression 

(LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest 

Neighbors (KNN). Two text representation techniques commonly used in privacy policy analysis 

literature, Doc2Vec and TF-IDF, were used to produce a text representation from each segment 

for input into each model (Sathyendra et al. 2017; Tesfay et al. 2018; Wilson et al. 2016; Zimmeck 

et al. 2019). In Experiment 2, we compared SAAS’ performance against DL-based models in four 

categories: CNN-based, uni-directional RNN-based (LSTM and GRU), bi-directional RNN-based 

(Bi-LSTM and Bi-GRU), and attention-based (SSASE). Consistent with best practices in IS 

literature, we implemented each model used in Experiments 1 and 2 based on the details (e.g., 

structure, layers, parameters, etc.) provided by previous privacy policy analysis and DL literature. 

In Experiment 3, we conducted an ablation analysis that evaluated two variations of the SAAS: (1) 

SAAS without the row-wise attention to identify how the proposed row-wise attention mechanism 

affects the model performance and (2) SAAS with the row-wise attention but without the activation 

function to evaluate the effect of increasing the number of trainable parameters. 

Consistent with privacy policy analysis literature, we executed each benchmark experiment 

with the 3,749 segments from the OPP-115 dataset that possess one or more data practice labels 

agreed upon by the original annotators (Wilson et al. 2016). Overall, 2,848 segments have one 

label, 792 segments have two labels, 88 have three labels, 18 segments have four labels and three 

Ablation 
Analysis 

SAAS without the row-wise attention Samtani et al.  
Forthcoming ; 
Zhu et al. 2021 

SAAS with the row-wise attention but without the activation function 
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segments have five labels. We present the number of segments associated with each data practice 

category (label) in Table 6. 

Table 6. Number of Segments in Each Data Practice Category in OPP-115 
Data Practice Category (Label) Number of Segments  
 

First Party Collection (FP) 1,522 
Third Party Sharing/Collection (TP) 1,186 
User Choice/Control (UCC) 632 
User Access, Edit & Deletion (UAED) 231 
Data Retention (DR) 156 
Data Security (DS) 375 
Policy Change (PC) 192 
Do Not Track (DNT) 32 
International & Specific Audiences (ISA) 353 
Other (O) 1,763 
 

Total:  6,442* 
* Note: The size of this testbed is consistent with or exceeds the dataset sizes used in several past IS studies that 
trained and evaluated DL models (Zhu et al. 2020). 

The number of segments in each category ranges from 32 to 1,763, suggesting that the 

distribution of segments across the categories is imbalanced. The FP and TP categories have the 

highest number of segments with 1,522 and 1,186, respectively, while the DNT category contains 

the least number of segments (32). We executed each experiment for each data practice category. 

Since the dataset is imbalanced, model performances were measured using the precision, recall, 

and F1-score metrics. Precision is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑖𝑖 =
𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖)

𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖)
, 

where 𝑃𝑃𝑖𝑖 ∈ 𝐶𝐶 . 𝐶𝐶  is the set of ten data practice categories, 𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖) (True Positives) denotes the 

number of segments correctly classified to a specific data practice category 𝑃𝑃𝑖𝑖, and 𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖) (False 

Positives) is the number of segments incorrectly classified to a specific data practice category 𝑃𝑃𝑖𝑖. 

Precision measures whether a model can correctly classify a segment into a specific category. 

Recall is defined as: 

𝑅𝑅𝑃𝑃𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑐𝑐𝑖𝑖 =
𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖)

𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖)
, 



26 
 

where 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖) (False Negative) is the number of segments incorrectly classified as not a specific 

data practice category 𝑃𝑃𝑖𝑖. Recall measures whether a model can detect all the segments in each 

data practice category. F1-score is the harmonic mean of precision and recall and is formulated as: 

𝐹𝐹1-𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑖𝑖 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑐𝑐𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑖𝑖 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑐𝑐𝑖𝑖

. 

We also used the micro-averaged precision, micro-averaged recall, and micro-averaged 

F1-score metrics to evaluate the performance of each model across all data practice categories 

(Harkous et al. 2018; Wilson et al. 2016). Three metrics are defined as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 =
∑ 𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖)𝑐𝑐𝑖𝑖∈𝐶𝐶

∑ 𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖)𝑐𝑐𝑖𝑖∈𝐶𝐶 + 𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖)
,  𝑅𝑅𝑃𝑃𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 =

∑ 𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖)𝑐𝑐𝑖𝑖∈𝐶𝐶

∑ 𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖)𝑐𝑐𝑖𝑖∈𝐶𝐶 + 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖)
, 

𝐹𝐹1-𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 . 

Finally, we used Hamming Loss (HL) and micro-averaged HL to evaluate model performance on 

each category and across all categories. HL is a frequently used metric for evaluating the 

performance of algorithms operating in multi-label classification tasks (Tsoumakas and Katakis 

2007). It measures the fraction of labels that are incorrectly predicted. HL and Micro-averaged HL 

are defined as follows: 

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝐻𝐻 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖 =
𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖)

𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝑇𝑇𝐹𝐹(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖)
 

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝐻𝐻 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚 =
∑ 𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖)𝑐𝑐𝑖𝑖∈𝐶𝐶

∑ 𝑇𝑇𝑃𝑃(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝑃𝑃(𝑃𝑃𝑖𝑖) +𝑐𝑐𝑖𝑖∈𝐶𝐶 𝑇𝑇𝐹𝐹(𝑃𝑃𝑖𝑖) + 𝐹𝐹𝐹𝐹(𝑃𝑃𝑖𝑖)
 

where 𝑇𝑇𝐹𝐹(𝑃𝑃𝑖𝑖)  (true negatives) denotes the number of segments correctly classified as not 

belonging to a specific data practice category 𝑃𝑃𝑖𝑖. HL examines how likely the model will predict 

data practice segments with incorrect data practice categories. 
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For all experiments, 5 times 2-fold (5 x 2) cross-validation was adopted (Demšar 2006; 

Dietterich 1998). 5 x 2 cross-validation is a suitable approach for comparing two classifiers on a 

single dataset. It overcomes the problem of underestimated variance and elevated Type I error 

when using resampled paired t-test and the k-fold cross-validated paired t-test. We randomly 

assigned all 3,749 segments into two partitions with an iterative-stratification sampling strategy 

(Sechidis et al. 2011) to ensure low variance of performance across folds. In each fold, one 

partition was used for testing and the other partition was used for training (90%) and validation 

(10%). This process was repeated five times, and results were averaged to produce a single 

estimation. Paired t-tests (Demšar 2006; Dietterich 1998) were used to identify statistically 

significant differences between performance metrics. Performance differences were considered 

significant at 𝑝𝑝 < 0.05, 0.01, and 0.001. 

All experiments were executed on a single Microsoft Windows 10 Pro server with 128GB 

of Random Access Memory (RAM), an Nvidia GeForce GTX 1070 Ti Graphical Processing Unit 

(GPU), and an E5-2670 v4 at 2.60 Gigahertz (GHz) Intel Central Processing Unit (CPU). All 

algorithm implementations were based on the PyTorch (Paszke et al. 2019), Natural Language 

Toolkit (NLTK) (Bird et al. 2009), NumPy (Oliphant 2006; Van Der Walt et al. 2011), pandas 

(McKinney 2010), genism (Rehurek and Sojka 2010), and scikit-learn (Fabian et al. 2011) 

packages. To facilitate scientific reproducibility, the full SAAS implementation details are 

provided in Appendix A.  

RESULTS AND DISCUSSION: EXPERIMENTS AND CASE STUDY 

 Experiment 1 Results: SAAS vs. Conventional Machine Learning Models 

Experiment 1 evaluated the performance of SAAS against conventional ML models. All 

models were evaluated based on micro-averaged precision, micro-averaged recall, micro-averaged 
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F1-score, and micro-averaged HL. Results are grouped based on the underlying text representation 

used by the algorithm: term frequency-based or paragraph vector-based. Table 7 summarizes all 

model performances. The highest scores are highlighted in boldface. Precision, recall, F1-score, 

and HL scores for each of the ten data practice categories are reported in Appendix B. 

*, **, ***: Statistically significant difference at 𝑝𝑝 < 0.05, 0.01, 0.001 

SAAS outperformed all conventional ML methods, except TF-IDF + RF, on micro-

averaged precision (0.809) by statistically significant margins. Moreover, SAAS achieved the best 

micro-averaged recall (0.714), micro-averaged F1-score (0.758), and micro-averaged HL (0.058), 

significantly outperforming all benchmarks. Overall, models generating segment representations 

that retained word-level information (i.e., term frequency-based and proposed SAAS) 

outperformed those that aggregated word-level information (i.e., paragraph vector-based). In 

privacy policy annotation, keywords are useful for identifying whether a segment belongs to a 

specific data practice category. For example, the keyword “share” is more likely to indicate 

belonging to “Third Party Sharing/Collection,” and the keyword “collect” can indicate both “First 

Party Collection” and “Third Party Sharing/Collection.” Doc2Vec generated similar segment 

representations containing key terms that share similar surrounding texts (e.g., “share your 

information” and “collect your information”), leading to lower performances than term frequency-

based models and the proposed SAAS. Furthermore, LR and SVM outperformed other term 

Table 7. Experiment 1 Results: SAAS vs. Conventional Machine Learning 
Models 
Model Category Model Micro-averaged 

Precision 
Micro-averaged 
Recall 

Micro-averaged 
F1-score 

Micro-averaged 
HL 

 

Paragraph Vector-
based (Doc2Vec) 

LR 0.692*** 0.524*** 0.596*** 0.091*** 
SVM 0.768*** 0.478*** 0.589*** 0.085*** 
RF 0.700*** 0.387*** 0.499*** 0.099*** 
KNN 0.676*** 0.454*** 0.543*** 0.097*** 

Term Frequency-
based (TF-IDF) 

LR 0.763*** 0.683*** 0.721*** 0.068*** 
SVM 0.733*** 0.670*** 0.700*** 0.073*** 
RF 0.846 0.548*** 0.546*** 0.085*** 
NB 0.778*** 0.550*** 0.645*** 0.077*** 
KNN 0.759*** 0.626*** 0.686*** 0.073*** 

Proposed SAAS 0.809 0.714 0.758 0.058 
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frequency-based models on the micro-averaged F1-score, possibly due to their ability to process 

high dimensional features (Kamath et al. 2018). Finally, SAAS outperformed term frequency-

based models on the micro-averaged F1-score.  

SAAS’ performance is likely attributable to its ability to leverage both context and local 

semantic information of each word. To illustrate SAAS’s better performance, we select two 

example segments where SAAS correctly classified them as not belonging to FP. At the same time, 

8 out of 9 benchmark approaches, including TF-IDF + LR that achieved the second-highest 

performance, incorrectly classified them as FP. We present the two example segments that were 

captured by SAAS but missed by TF-IDF + LR (the best performing benchmark model in terms 

of F1-Score) in Table 8. The table is organized based on the company that the privacy policy 

belongs to, the segment in the privacy policy, the ground truth data practice category of the 

segment, and the predicted data practice category generated by SAAS and TF-IDF + LR. The 

shades of the color encode the normalized word weights learned by each method. Dark red 

indicates the higher importance of phrases in the segment. Instances related to FP and TP are 

selected because FP and TP have the highest number of labels (653 and 548), which provide a 

better chance to identify the patterns that our proposed methods can capture while others cannot. 

A similar pattern occurs in 346 out of 1,872 segments in the testing dataset. 

Table 8. Segments Detected by SAAS but Missed by Conventional ML Models 
Company Segment Ground 

Truth 
SAAS’s 
Predictions 

TF-IDF + LR’s  
Predictions 

Fox 
Sports 

 

 
 

TP TP FP 
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Allstate 
Insurance 

 

 

TP TP FP 

As highlighted in the yellow box in Table 8, phrases such as “collect from or about you” 

can indicate both “First Party Collection” and “Third Party Sharing/Collection.” SAAS assigned 

lower weights to those phrases. Thus, decreasing the possibility of incorrect predictions misled by 

those phrases. In contrast, term frequency-based and paragraph vector-based methods often lack 

the ability to distinguish two data practice categories that share similar keyword distributions. In 

addition, as highlighted in the blue box in Table 8, the phrases “need to share,” “third party 

service,” and “our business partners” are more likely to indicate belonging to “Third Party 

Sharing/Collection,” which were assigned higher weights. This example suggests that SAAS’s use 

of the attention mechanism with Bi-LSTM enables the model to better leverage the context 

information to achieve higher classification performance. 

Experiment 2 Results: SAAS vs. Prevailing Deep Learning Models 

Experiment 2 evaluated the performance of SAAS against ten selected state-of-the-art deep 

learning-based models. Table 9 summarizes model performances, grouped by CNN-based, RNN-

based (uni-directional and bi-directional), and attention-based models. All models were evaluated 

based on micro-averaged precision, micro-averaged recall, micro-averaged F1-score, and micro-

averaged HL as in Experiment 1. The highest scores are highlighted in boldface. Precision, recall, 

F1-score, and HL of each data practice category are also reported in Appendix B. 

Table 9. Experiment 2 Results: SAAS vs. Prevailing Deep Learning Models 
Method Category Model Micro-

Averaged 
Precision 

Micro-Averaged 
Recall 

Micro-
Averaged F1-
score 

Micro-
Averaged 
HL 

 

CNN-based  CNN 0.762*** 0.729 0.745** 0.064*** 
Uni-directional RNN-
based 

LSTM + Max Pooling 0.763*** 0.719 0.739*** 0.065*** 
LSTM + Mean Pooling 0.756** 0.706 0.730** 0.067*** 
GRU + Max Pooling 0.773** 0.724 0.747* 0.063** 
GRU + Mean Pooling 0.780** 0.721 0.749* 0.062** 
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Bi-directional RNN-
based 

BiLSTM + Max Pooling 0.752*** 0.733 0.742* 0.065** 
BiLSTM + Mean Pooling 0.777*** 0.712 0.743*** 0.063*** 
BiGRU + Max Pooling 0.767*** 0.728 0.746** 0.063*** 
BiGRU + Mean Pooling 0.779*** 0.718 0.747** 0.063** 

Attention-based  
 

SSASE 0.770*** 0.729 0.749* 0.062*** 
Proposed SAAS 0.809 0.714 0.758 0.058 

*, **, ***: Statistically significant difference at 𝑝𝑝 < 0.05, 0.01, 0.001 

As shown in Table 9, our proposed SAAS achieved the best micro-averaged precision 

(0.809), micro-averaged F1-score (0.758), and micro-averaged HL (0.058) at statistically 

significant margins. CNN and uni-directional RNN-based methods had similar performances and 

were both worse than those of bi-directional RNNs. This result indicates that capturing both 

forward and backward directions provides more comprehensive local context information for 

distinguishing segment semantics. Attention-based methods (SAAS and SSASE) outperformed bi-

directional RNN-based methods. This finding indicates that capturing both global and local 

correlations with the self-attention mechanism can further disambiguate word semantics. 

Compared to the second-best performing model SSASE, SAAS provided additional weights for 

different semantic aspects in the matrix sentence embedding. As a result, it emphasized 

differentiating aspects that can contribute to multi-label classification and was less likely than 

SSASE to be misled by shared aspects (e.g., common key phrases across multiple categories).  

We select two example segments (Table 10) where SAAS correctly classified them as both 

FP and TP. At the same time, all benchmark approaches incorrectly classified them as only FP or 

TP. A similar pattern occurs in 287 out of 1,872 segments in the testing dataset. We present the 

two example segments in Table 10. The table is organized based on the company that the privacy 

policy belongs to, the segment in the privacy policy, the ground truth data practice category of the 

segment, and the predicted data practice category generated by SAAS and SSASE. The shades of 

the color encode the normalized word weights learned by each method. Dark red indicates the 

higher importance of phrases in the segment. Instances related to FP and TP are selected because 
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FP and TP have the highest number of labels (653 and 548), which provide a better chance to 

identify the patterns that our proposed methods can capture while others cannot. 

Table 10. Example Segments Detected by SAAS but Missed by SSASE 
Company Segment Ground 

Truth 
SAAS’s 
Predictions 

SSASE’s  
Predictions 

Fortune 

 

FP, TP FP, TP FP 

Disinformation 

 

FP, TP FP, TP FP 

As highlighted in the blue box, two segments contained sentences indicating both the first 

party and third party will collect/access users' data. SAAS learned segment representations by 

considering the relationship between the given segment and all ten categories. Since FP and TP 

share various common semantic aspects, segments that belong to FP (or TP) are more likely to 

also belong to TP (or FP). In addition, SAAS can emphasize differentiating semantic aspects (e.g., 

“by us and or by our service providers or partners”) by row-wise attention mechanism to generate 

representations. As a result, SAAS avoids mislabeling segments because of the increased 

probability caused by the shared aspects.  

Experiment 3 Results: Ablation Analysis 
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Experiment 3 examined the effect of the row-wise attention mechanism on performance. 

Three variants of the row-wise attention mechanism were tested, including SAAS without the row-

wise attention mechanism, SAAS with the row-wise attention mechanism but without the 

activation function, and SAAS with the row-wise attention. All models were evaluated based on 

micro-averaged precision, micro-averaged recall, micro-averaged F1-score, and micro-averaged 

HL as in Experiment 1. Table 11 summarizes the evaluation results. The highest scores are 

highlighted in boldface. Precision, recall, F1-score, and HL for each category are reported in 

Appendix B. 

Table 11. Performance of Ablation Analysis 
Model Micro-

Averaged 
Precision 

Micro-
Averaged 
Recall 

Micro-
Averaged 
F1-score 

Micro-
Averaged 
HL 

 

SAAS without the row-wise attention 0.800*** 0.706*** 0.750*** 0.060*** 
SAAS with the row-wise attention but without the 
activation function 

0.802*** 0.699*** 0.747*** 0.060*** 

SAAS with the row-wise attention 0.809 0.714 0.758 0.058 
*, **, ***: Statistically significant difference at 𝑝𝑝 < 0.05, 0.01, 0.001 

SAAS achieved the best micro-averaged precision (0.809), micro-averaged recall (0.714), 

micro-averaged F1-score (0.758), and micro-averaged HL (0.058) over all variants by statistically 

significant margins. The row-wise attention mechanism emphasized the critical semantic aspects 

extracted by the self-attention mechanism corresponding to each segment, thus, improving the 

performance. In addition, SAAS with the row-wise attention but without the activation function 

had a lower F1-score (0.747). The row-wise attention mechanism without the activation function 

is similar to add a dense layer to generate random weights for different semantic aspects learned 

by the self-attention mechanism. While the number of trainable parameters is the same between 

SAAS with the row-wise attention with and without the activation function, the results indicate 

that increasing the number of trainable parameters did not necessarily increase the performance. 

By incorporating the activation function, the row-wise attention can identify the non-linear 
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relationship between each word and the segment (dense layer can only identify the linear 

relationship), which contributes to the improvement of the performance. 

Regulation Impact Detection: A Case on GDPR 

To demonstrate proof-of-concept, usability, usefulness, and the potential value of our 

proposed SAAS, we conducted a GDPR impact detection analysis on Amazon’s privacy policies. 

While our proposed framework can be applied for any regulation, we focus the analysis on the 

impacts of GDPR on privacy policy evolution. GDPR is chosen as it impacts companies worldwide 

rather than regionally (e.g., CCPA in California), and it has more documented global impacts than 

other recent regulations. We chose Amazon because it was recently fined $888 million based on 

accusations of using user data for targeting ads without the user’s free consent (violating GDPR) 

(Dumiak 2021). Therefore, the goal of our case study is to identify whether Amazon’s pre- and 

post-GDPR privacy policies provide comprehensive information about the ad targeting system and 

if they explicitly ask users to agree to Amazon’s use of their data (i.e., regulation impact detection). 

We employed five steps to execute the case study:  

• Step 1 – Collect privacy policies before and after a time of interest: Since GDPR became 

enforceable beginning May 25, 2018, we collected the pre- and post-GDPR privacy policies 

released on March 3, 2014 and February 12, 2021, respectively. 

• Step 2 – Pre-process the collected privacy policies and divide them into semantically 

coherent segments with text segmentation techniques: Consistent with previous studies, the 

retrieved privacy policies are segmented based on the HTML <div> and <p> tags (Harkous et 

al. 2018). To further sub-divide long segments, we used ST-Ro (Aumiller et al. 2021), a 

transformer-based text segmentation model that outperforms other prevailing segmentation 

techniques such as GraphSeg (Harkous et al., 2018) and WikiSeg (Bertino et al. 2021). 
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• Step 3 – Annotate segments using SAAS: We annotated segments in pre- and post-GDPR 

privacy policies using SAAS pre-trained on the OPP-115 corpus. 

• Step 4 – Select data practice categories of interest: We selected FP, TP, UAED, and UCC 

because FP and TP contain information of users’ data collected by first-party and third-party, 

including personally identifiable information and behavioral data that facilitate targeting ads. 

UAED and UCC comprise users’ right to access any information collected by the first-party 

and third-party and opt-in/out of disclosing their data. 

• Step 5 – Visualize segments in data practice categories of interest using attention weights: 

To identify the difference in privacy policies, we visualized the segments to pinpoint phrases 

with higher attention weight changes in each data practice category. 

Table 12 presents two selected corresponding FP segments in pre- and post-GDPR privacy 

policies. Phrases with higher attention weights are highlighted in red. 

Table 12. A Selected Segments in FP. 
Time Segment 
 

Pre-GDPR 

 
Post-GDPR 

 

As shown in Table 12, the segments are related to cookies, commonly known for collecting 

users' behavioral data to generate personalized recommendations. The pre-GDPR privacy policy 

states that cookies aim to provide specific features (highlighted in blue box 1) and provides several 

examples. In contrast, in the post-GDPR, the highlighted phrase leads users to another document 

1 

2 
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called "Cookies Notice" (highlighted in blue box 2). According to Article 25 of the EU GDPR, 

privacy by default states that the strictest privacy protection/settings should be applied by default 

without users' manual input (Information Commisioner’s Office 2018). However, users will need 

to link to and read another document to understand Amazon's use of cookies. If users do not read 

"Cookies Notice," they will not know what they consent to. In this case, the post-GDPR Amazon 

privacy policy has increased the burden on users to understand data practices related to target ads 

(violating a core principle of GDPR). 

DISCUSSION AND CONTRIBUTIONS  

The increasing societal concern about/over consumer information privacy has led to new 

privacy regulations and revolutionary changes in companies’ privacy policies. Consequently, there 

is a need to evaluate how companies change their privacy policies and whether they provide more 

protection to users’ information. In this study, we adopted the computational design science 

paradigm to systematically develop a novel privacy policy evolution analytics framework. Guided 

by key privacy analytics domain requirements, we designed, implemented, and evaluated a novel 

privacy analytics framework with DL-based text analytics methods to better understand and 

analyze privacy policy evolution. We rigorously evaluated the proposed approach against 

benchmark ML and DL methods and demonstrated its practical utility with an in-depth case study 

of GDPR’s impact on Amazon’s privacy policies. As a result, our research contributes to the IS 

knowledge base and has managerial and practical implications. We discuss each in turn in the 

following sub-sections.  

Contributions to the IS Knowledge Base 

Novel IT artifacts often contribute prescriptive knowledge back to the IS knowledge base 

to guide future research (Gregor and Hevner 2013; Hevner et al. 2004; Nunamaker et al. 1990; 
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Peffers et al. 2007; Rai 2017; Zhu et al. 2021). Common contributions include a situated 

implementation of an IT artifact in a selected domain and/or design principles that can be applied 

other application environments. Our proposed privacy analytics framework is a situated 

implementation aligned at the unique intersection of information privacy and data analytics. As a 

result, it can potentially open a promising area of IS research inquiry in privacy analytics. It also 

follows three key design principles that can be applicable beyond the privacy policy evolution 

analysis: (1) the row-wise attention mechanism in weighing attention heads for improving the 

performance of multi-label classification tasks, (2) automated and quantitative measurement of 

privacy policy evolution analysis, and (3) representing policy changes via visualizations to reduce 

cognitive load. Each design principle can provide a valuable reference for future research in 

designing new IT artifacts for e-commerce, social media analytics, health, and privacy. Table 13 

summarizes the framework components, its general design principle, the relevant IS literature to 

which each principle can offer value, and potential classes of research inquiry. We then further 

elaborate on how these design principles can offer value to each listed body of IS literature. 

Table 13. Design Principles Offered by our Proposed Privacy Policy Evolution 
Analytics Framework for Selected Bodies and Classes of IS Research Inquiry 
Proposed 
Framework 
Component 

General Design Principle  Relevant IS 
Literature 

Potential Class of Research Inquiry 

SAAS’ 
Attention 
Mechanism 

The row-wise attention mechanism 
in weighing attention heads for 
improving the performance of 
multi-label classification tasks 

E-commerce Analyzing the relationship between 
consumer preference and product selection 
from product reviews 

Health Identifying patients’ needs for social support 
from social media posts 

Regulation 
Impact 
Analytics 

Automated and quantitative 
measurement of privacy policy 
evolution analysis 

Privacy Analysis of legal articles 
Analysis of Terms of Use or End-User 
License Agreement (EULA) documents 

Visualization Representing policy changes via 
visualizations to reduce cognitive 
load 

Privacy Analytics assistance systems 
Privacy question/answer systems 

 
E-commerce. Product reviews in e-commerce help to examine the relationship between 

users’ preferences and product choices (Wu et al. 2019). However, previous studies conducted 
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through surveys and experiments cannot effectively analyze large amounts of unstructured data 

(Haws et al. 2010; Wu et al. 2019). SAAS and its extensions can facilitate an in-depth analysis of 

product reviews in e-commerce. For example, a product review may simultaneously complain 

about the texture, price, and quality of the after-sales service. The high performance of SAAS in 

multi-label classification can help point out multiple product issues (labels) mentioned in a product 

review. In addition, SAAS’s ability to more effectively identify important terms or phrases in 

consumers’ product reviews can help relevant stakeholders conduct an in-depth analysis of the 

cause of a complaint. 

Health. Social media has become a popular channel for patients seeking health support 

(Bardhan et al. 2020; Chau et al. 2020). SAAS can automatically identify multiple symptoms or 

health needs in the content posted by patients, such as stress, physical disorders, and mental 

disorders. SAAS offers visualization results that can further benefit health providers in 

understanding how patients express their needs and how social support can satisfy different needs. 

Privacy. Regulations such as GDPR and CCPA have significant and lasting global impact. 

The number of legal documents related to these privacy regulations exceeds what humans can 

manually analyze. The complex nature of legal documents makes the analysis process even more 

difficult. Our proposed DL-based privacy policy evolution analytics framework combined with 

the visualization system can help analyze a wide range of lengthy and difficult-to-understand legal 

articles. These includes Terms of Use, End-User License Agreement (EULA), and others. 

Moreover, the visualization system can play a key role in designing useful privacy analytics 

assistance systems.  

Managerial and Practical Implications 
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Regulators and companies are increasingly focusing on the protection of consumer 

information privacy. Privacy policies are important reference documents in examining how 

companies handle personal data. Due to its complex characteristics, privacy policy analysis is often 

limited to manual analysis in extant studies. However, as businesses affected by new privacy 

regulations, the number of privacy policies to be analyzed and reviewed has steadily increased. 

Consequently, there has been a significant push in recent years to develop automated privacy 

policy analysis systems. However, current systems often lack accuracy, and can limit a system’s 

decision-making capabilities. Our proposed framework helps address these limitations by enabling 

the analysis of hundreds or thousands of complex privacy policies in an automated fashion. We 

believe that our automated privacy analytics research will help the two types of stakeholders in 

practice: regulators and companies. We discuss each below.  

Regulators. Our proposed framework can help identify content changes in different data 

practice categories. It can be used by regulators in different ways. First, regulators can examine 

whether a company’s privacy policy is clear, comprehensive, and in compliance. Furthermore, 

when a company claims that the policy was adjusted according to the regulations, our proposed 

framework can be a viable and effective tool to assist in auditing the changes the company made. 

Companies. Privacy policies will continue to change based on the functions provided by 

the business, requirements of new privacy regulations, and the evolving consumer privacy 

expectation. Our proposed framework can be used by companies to review potential compliance 

issues in their privacy policies. It can also help pinpoint and suggest specific data practice segments 

according to the new domestic and global privacy regulations. Consequently, companies can 

prevent fatal privacy violations and the associated legal and financial consequences. 
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CONCLUSION AND FUTURE DIRECTIONS 

In this study, we developed a novel privacy policy evolution analytics framework to help 

identify changes in companies’ privacy policies corresponding to new privacy regulations. This 

framework’s core novelty is the proposed SAAS method. SAAS extends the nascent multi-head 

attention-based SSASE method to automatically label privacy policy segments that comprise 

multiple data practice categories. An extensive set of experiments demonstrated how SAAS 

outperforms conventional machine learning approaches and state-of-the-art DL and attention-

based algorithms in data practice annotation. In the case study, we demonstrated the value of SAAS 

and the visualizations in identifying the impact of GDPR on the use of words in Amazon’s privacy 

policies. Results of this case study indicated that instead of easing consumers’ cognitive load in 

understanding Amazon’s data practice (a key principle of GDPR), Amazon’s revised privacy 

policy actually requires consumers to exert more effort to find all the information related to target 

ads. Since other geopolitical factors can impact privacy policies and new threats will continue to 

appear due to technological advances, privacy policies will be more frequently revised to better 

protect future consumer information privacy. To this end, our proposed framework addresses the 

increasing need for an automated privacy policy analysis tool. 

There are several promising directions for future research. First, different cultures and 

countries may address consumer privacy issues differently. To this end, future work may regard a 

multilingual privacy policy evolution analytics framework to handle multiple languages in 

different policy data categories and segments. This can help enable international stakeholders 

across multiple geopolitical regions to investigate a privacy policy’s global impact. Second, an AI 

assistive system can be developed based on SAAS to assist end-users in large-scale online privacy 

policy comparison from different companies when selecting online products and services. 
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Developing a system with a user-friendly interface and browse, search, and recommendation 

functions based on our proposed SAAS can help users better understand their privacy rights and 

data protection actions. Each direction can help build a better understanding of how organizations 

and consumers respond to future privacy policy requirements in a rapidly changing digital world. 
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Automated Analysis of Changes in Privacy Policies: A 
Structured Self-Attentive Sentence Embedding 

Approach 
APPENDIX A: SAAS MODEL SPECIFICATIONS 

The proposed SAAS model is implemented with PyTorch, a prevailing Python deep 

learning framework (Paszke et al. 2019). Consistent with best practices in computational design 

science research, we provide the key architectural details and the parameter settings of our 

proposed model to facilitate scientific reproducibility across varying computational setups (Zhu et 

al. 2021). Table A1 summarizes the specifications of each component in our proposed SAAS 

model, including layers, activation/dropout function implementations, and output sizes. 

Table A1. SAAS Model Specification 
Component Layer Previous Layer Activation Function Dropout Output Shape 
Input Input - - - (500) 
Word Embedding Embedding  Input - Yes (500, 300) 
Bi-LSTM Bi-LSTM Embedding - Yes (500, 256*4) 
Attention Mechanism Dense1  Bi-LSTM tanh No (256*4 , 512) 

Dense2  Dense1 Softmax Yes (512, 30) 
Matrix Sentence Embedding M_emb  Bi-LSTM, Dense2 - - (512, 30) 
Row-wise Attention Dense3  M_emb Tanh, Softmax - (30, 1) 
Multi-label Classifier Dense4 M_emb - Yes (512*30, 1024) 

Dense5  Dense4 Sigmoid - (1024, 1) 
Dense6  Dense4 Sigmoid - (1024, 1) 
⋮ ⋮ ⋮ - ⋮ 
Dense7  Dense4 Sigmoid - (1024, 1) 

 To ensure the length consistency of the input data practice segments, we padded and 

truncated segments that contained less than or more than (respectively) 500 words. Each word was 

encoded as a 300-dimensional word embedding. For the Bi-LSTM component, each direction (i.e., 

forward and backward) contained two LSTM layers with a 256-dimensional hidden state. The four 

hidden states of Bi-LSTM were concatenated as the input of the attention mechanism and matrix 

sentence embedding. In the attention mechanism, the Dense1 layer generated 512 linear 

combinations of the Bi-LSTM hidden state, from which the Dense2 layer extracted 30 disparate 
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aspects. Row-wise attention weighted the 30 aspects of matrix sentence embedding. Finally, matrix 

sentence embedding was passed to a dense layer of 1024 nodes and ten binary classifiers (i.e., 

Dense5 to Dense14) for multi-label classification. To evaluate the multi-label classification 

performance of the models, we used binary cross-entropy as the loss function. We used Adam 

optimizer (Kingma and Ba 2015) to train the model, with a learning rate of 0.0005 and a batch size 

of 32. Training deep learning models with the Adam optimizer is consistent with previous IS 

analytics literature (Ebrahimi et al. Forthcoming). 
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APPENDIX B: PERFORMANCE BREAKDOWN BY CATEGORY 

 In the main text, we presented the results of the proposed SAAS and all benchmark machine 

learning (ML) and deep learning (DL) models at an aggregate level (across all data practice 

categories). However, we were also interested in identifying how each approach performed in each 

category. We present the performance of SAAS against conventional ML models by 10 data 

practice categories in Table B1. Models are grouped based on the underlying text representation 

used by the algorithm: term frequency-based or paragraph vector-based. All models were 

evaluated based on precision, recall, F1-score, and Hamming Loss (HL). The highest scores are 

highlighted in boldface. 

Table B1. Performance of SAAS vs. Conventional Machine Learning Models by 
Category 
Model 
Category 

Model FP  
(n=1,522) 

TP 
(n=1,186) 

UCC 
(n=632) 

UAED 
(n=231) 

DR 
(n=156) 

DS 
(n=375) 

PC 
(n=192) 

DNT 
(n=32) 

ISA 
(n=353) 

O 
(n=1,763) 

 

Precision 
 

Paragraph 
Vector-
based 
(Doc2Vec) 

LR 0.762** 0.728*** 0.632*** 0.565*** 0.203*** 0.625*** 0.651*** 0.406*** 0.816*** 0.623*** 
SVM 0.784 0.757** 0.722 0.727* 0.000*** 0.901 0.797*** 0.559*** 0.915 0.698*** 
RF 0.723*** 0.700*** 0.620*** 0.671* 0.025*** 0.760* 0.887* 0.200*** 0.804*** 0.654*** 
KNN 0.734*** 0.715*** 0.615*** 0.562*** 0.167** 0.676*** 0.875** 0.617* 0.809*** 0.579*** 

Term 
Frequency-
based (TF-
IDF) 

LR 0.787 0.781 0.679** 0.839 0.733 0.855 0.911 1.000 0.909 0.667*** 
SVM 0.760** 0.742** 0.643*** 0.828 0.723 0.848 0.902* 1.000 0.916 0.633*** 
RF 0.825 0.853 0.841 0.873 0.852 0.950 0.975 0.700 0.953 0.817 
NB 0.767** 0.757** 0.760 0.780 0.794 0.908 0.779*** 0.982 0.909 0.759* 
KNN 0.742*** 0.740*** 0.700** 0.768 0.823 0.873 0.842** 1.000 0.898 0.748*** 

Proposed SAAS 0.801 0.810 0.771 0.799 0.622 0.843 0.951 0.960 0.908 0.803 
 

Recall 
 

Paragraph 
Vector-
based 
(Doc2Vec) 

LR 0.634*** 0.561*** 0.356*** 0.443*** 0.106 0.520*** 0.656* 0.535 0.731*** 0.398*** 
SVM 0.630*** 0.532*** 0.307*** 0.270*** 0.000** 0.397*** 0.635** 0.471 0.679*** 0.327*** 
RF 0.544*** 0.456*** 0.227*** 0.090*** 0.002** 0.137*** 0.434*** 0.020*** 0.251*** 0.369*** 
KNN 0.555*** 0.479*** 0.285*** 0.111*** 0.006** 0.262*** 0.592*** 0.065*** 0.319*** 0.539* 

Term 
Frequency-
based (TF-
IDF) 

LR 0.751*** 0.711*** 0.537 0.600 0.323 0.669 0.785 0.903 0.817 0.625 
SVM 0.738*** 0.705*** 0.537 0.580* 0.313 0.640** 0.735 0.858 0.771** 0.618 
RF 0.626*** 0.600*** 0.347*** 0.176*** 0.139 0.524*** 0.416*** 0.084*** 0.670*** 0.518*** 
NB 0.722*** 0.558*** 0.336*** 0.260*** 0.121 0.550*** 0.632*** 0.535 0.615*** 0.475*** 
KNN 0.750*** 0.663*** 0.445** 0.469*** 0.168 0.554*** 0.740 0.832 0.761*** 0.534* 

Proposed SAAS 0.848 0.811 0.519 0.642 0.119 0.696 0.716 0.506 0.821 0.581 
 

F1-score 
 

Paragraph 
Vector-
based 
(Doc2Vec) 

LR 0.692*** 0.633*** 0.454*** 0.495*** 0.139 0.566*** 0.650*** 0.455** 0.771*** 0.485*** 
SVM 0.698*** 0.625*** 0.427*** 0.392*** 0.000** 0.549*** 0.704*** 0.501* 0.779*** 0.444*** 
RF 0.621*** 0.552*** 0.331*** 0.156*** 0.004** 0.231*** 0.580*** 0.036*** 0.379*** 0.472*** 
KNN 0.632*** 0.573*** 0.388*** 0.184*** 0.012*** 0.377*** 0.705*** 0.116*** 0.456*** 0.558*** 

Term 
Frequency-
based (TF-
IDF) 

LR 0.769*** 0.744*** 0.598 0.699 0.441 0.749 0.842 0.948 0.859 0.645* 
SVM 0.749*** 0.722*** 0.584* 0.681* 0.433 0.729** 0.809 0.923 0.836** 0.625*** 
RF 0.631*** 0.595*** 0.343*** 0.153*** 0.106 0.511*** 0.444*** 0.172*** 0.672*** 0.509*** 
NB 0.743*** 0.642*** 0.466*** 0.388*** 0.210 0.685*** 0.697*** 0.685 0.733*** 0.584*** 
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KNN 0.746*** 0.699*** 0.543*** 0.581*** 0.274 0.677*** 0.786* 0.907 0.824*** 0.622*** 
Proposed SAAS 0.823 0.808 0.611 0.709 0.187 0.761 0.814 0.641 0.862 0.671 
 

HL 
 

Paragraph 
Vector-
based 
(Doc2Vec) 

LR 0.197*** 0.176*** 0.098*** 0.039*** 0.033*** 0.046*** 0.023*** 0.011*** 0.035*** 0.246*** 
SVM 0.189*** 0.174*** 0.094*** 0.036*** 0.025* 0.038*** 0.018*** 0.008*** 0.031*** 0.239*** 
RF 0.231*** 0.201*** 0.104*** 0.042*** 0.026** 0.053*** 0.021*** 0.008*** 0.066*** 0.241*** 
KNN 0.225*** 0.193*** 0.102*** 0.042*** 0.025* 0.050*** 0.016*** 0.008*** 0.062*** 0.249*** 

Term 
Frequency-
based (TF-
IDF) 

LR 0.158*** 0.133*** 0.082** 0.022 0.020 0.026 0.010 0.001 0.022 0.201*** 
SVM 0.172*** 0.147*** 0.087*** 0.023 0.020 0.028* 0.012 0.001 0.024** 0.216*** 
RF 0.210*** 0.168*** 0.094*** 0.040*** 0.023 0.038*** 0.024*** 0.008*** 0.041*** 0.206*** 
NB 0.173*** 0.169*** 0.088*** 0.035*** 0.023 0.029** 0.018*** 0.004 0.036*** 0.198*** 
KNN 0.178*** 0.155*** 0.086*** 0.029*** 0.022 0.031*** 0.013** 0.001 0.027*** 0.189*** 

Proposed SAAS 0.128 0.105 0.075 0.023 0.024 0.026 0.011 0.004 0.021 0.165 

 As shown in Table B1, SAAS outperformed all conventional machine learning methods, 

except TF-IDF + RF, on FP (0.801), TP (0.810), UCC (0.771), PC (0.951), and O (0.803) on 

precision. In addition, SAAS achieved the best recall on FP (0.848), TP (0.811), UAED (0.642), 

DS (0.696), and ISA (0.821). Furthermore, SAAS outperformed other benchmarks on FP (0.823), 

TP (0.808), UCC (0.611), UAED (0.709), DS (0.761), ISA (0.862), and O (0.671) on F1-score and 

on FP (0.128), TP (0.105), UCC (0.075), DS (0.026), ISA (0.021), and O (0.165) on HL. The 

results suggest that SAAS’s use of the attention mechanism with Bi-GRU enabled the model to 

better leverage the context information to achieve higher classification performance. However, 

SAAS did not outperform term frequency-based models on DR, DNT, and PC categories on all 

the metrics. This is mainly due to a lack of training data. These categories have less than 100 

instances that the deep learning models may not extract meaningful features for classification.  

We also evaluated to performances of the DL-based benchmarks by category. Table B2 

summarizes model performances, grouped by CNN-based, RNN-based (uni-directional and bi-

directional), and attention-based models. All models were evaluated based on precision, recall, F1-

score, and HL. The highest scores are highlighted in boldface. 

Table B2. Performance of SAAS vs. Prevailing Deep Learning Models by Category 
Model 
Category 

Model FP  
(n=1,522) 

TP 
(n=1,186) 

UCC 
(n=632) 

UAED 
(n=231) 

DR 
(n=156) 

DS 
(n=375) 

PC 
(n=192) 

DNT 
(n=32) 

ISA 
(n=353) 

O 
(n=1,763) 

 

Precision 
 

CNN-based  CNN 0.809 0.783* 0.615*** 0.674* 0.662 0.752** 0.795** 0.917 0.840*** 0.755* 
LSTM + Max Pooling 0.823 0.823 0.614*** 0.728 0.452 0.721*** 0.842* 0.834* 0.860*** 0.704** 
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Uni-
directional 
RNN-based 

LSTM + Mean Pooling 0.816 0.796 0.665** 0.663** 0.531 0.722*** 0.851* 0.626* 0.878 0.722** 
GRU + Max Pooling 0.826 0.835 0.664*** 0.702** 0.540 0.727** 0.878* 0.890 0.855** 0.699*** 
GRU + Mean Pooling 0.801 0.817 0.675* 0.723* 0.571 0.751** 0.858* 0.924 0.884* 0.760 

Bi-
directional 
RNN-based 

BiLSTM + Max Pooling 0.826 0.798 0.645** 0.735* 0.460 0.789* 0.888* 0.965 0.865* 0.683*** 
BiLSTM + Mean Pooling 0.799 0.821 0.676** 0.793 0.692 0.743** 0.881* 0.839* 0.864** 0.734** 
BiGRU + Max Pooling 0.820 0.815 0.636*** 0.762 0.398* 0.741** 0.893* 0.883 0.893 0.695*** 
BiGRU + Mean Pooling 0.823 0.804 0.678** 0.750 0.551 0.761** 0.891* 0.960 0.878* 0.733** 

Attention-
based 

SSASE 0.797 0.795 0.662* 0.729* 0.565 0.745* 0.887 0.824 0.890 0.745 
Proposed SAAS 0.801 0.810 0.771 0.799 0.622 0.843 0.951 0.960 0.908 0.803 

 

Recall 
 

CNN-based  CNN 0.776*** 0.798 0.648 0.707 0.355 0.720 0.829 0.832 0.864 0.627 
Uni-
directional 
RNN-based 

LSTM + Max Pooling 0.798** 0.775* 0.617 0.649 0.181 0.739 0.703 0.569 0.832 0.638 
LSTM + Mean Pooling 0.782** 0.786* 0.597 0.678 0.257 0.697 0.708 0.492 0.845 0.596 
GRU + Max Pooling  0.808* 0.780 0.609 0.716 0.247 0.706 0.695 0.544 0.845 0.638 
GRU + Mean Pooling 0.832 0.797 0.605 0.702 0.302 0.721 0.737 0.722 0.834 0.568 

Bi-
directional 
RNN-based 

BiLSTM + Max Pooling 0.788*** 0.796 0.613 0.707 0.255 0.727 0.747 0.648 0.873 0.662 
BiLSTM + Mean Pooling 0.811* 0.775** 0.591 0.669 0.355 0.733 0.703 0.615 0.823 0.587 
BiGRU + Max Pooling 0.803** 0.791 0.632 0.667 0.166 0.715 0.726 0.805 0.841 0.643 
BiGRU + Mean Pooling 0.805* 0.798 0.590 0.693 0.257 0.705 0.718 0.738 0.842 0.600 

Attention-
based 

SSASE 0.835 0.807 0.589 0.691 0.287 0.733 0.756 0.830 0.847 0.590 
Proposed SAAS 0.848 0.811 0.519 0.643 0.119 0.696 0.716 0.506 0.821 0.581 

 

F1-score 
 

CNN-based  CNN 0.791*** 0.789** 0.628 0.683 0.445 0.731* 0.809 0.859 0.851 0.684 
Uni-
directional 
RNN-based 

LSTM + Max Pooling 0.809* 0.798 0.605 0.675 0.248 0.728** 0.750** 0.651 0.844 0.665 
LSTM + Mean Pooling 0.797*** 0.789* 0.624 0.665 0.318 0.701*** 0.768* 0.462 0.860 0.649 
GRU + Max Pooling  0.816* 0.805 0.630 0.705 0.331 0.711*** 0.770* 0.643 0.848 0.664 
GRU + Mean Pooling 0.814 0.805 0.631 0.705 0.387 0.729*** 0.780* 0.787 0.856 0.648* 

Bi-
directional 
RNN-based 

BiLSTM + Max Pooling 0.805*** 0.795* 0.621 0.718 0.268 0.753 0.806 0.732 0.867 0.670 
BiLSTM + Mean Pooling 0.804*** 0.797* 0.627 0.724 0.450 0.736** 0.775* 0.637 0.841* 0.648 
BiGRU + Max Pooling 0.810** 0.801 0.626 0.710 0.221 0.721*** 0.797 0.821 0.865 0.666 
BiGRU + Mean Pooling 0.811* 0.799 0.623 0.716 0.331 0.725*** 0.786 0.822 0.858 0.657 

Attention-
based 

SSASE 0.814* 0.798 0.614 0.702 0.366 0.731* 0.810 0.823 0.867 0.656 
Proposed SAAS 0.823 0.808 0.611 0.709 0.187 0.761 0.814 0.641 0.862 0.671 

 

HL 
 

CNN-based  CNN 0.143*** 0.116* 0.088** 0.028* 0.021 0.031** 0.013* 0.002 0.025** 0.169 
Uni-
directional 
RNN-based 

LSTM + Max Pooling 0.131 0.107 0.092** 0.027* 0.025 0.032*** 0.015* 0.005 0.025* 0.187*** 
LSTM + Mean Pooling 0.138* 0.114 0.082* 0.030* 0.032 0.035*** 0.014* 0.012 0.022 0.187*** 
GRU + Max Pooling  0.128 0.102 0.082* 0.026 0.023 0.034** 0.013* 0.004 0.025 0.188*** 
GRU + Mean Pooling 0.132 0.105 0.080* 0.025* 0.024 0.031*** 0.014* 0.003 0.023 0.180*** 

Bi-
directional 
RNN-based 

BiLSTM + Max Pooling 0.133 0.111 0.085** 0.024 0.043 0.028 0.012 0.003 0.022 0.190*** 
BiLSTM + Mean Pooling 0.137** 0.107 0.080* 0.022 0.022 0.031** 0.013* 0.005 0.025** 0.186*** 
BiGRU + Max Pooling 0.131 0.107 0.087* 0.024 0.025* 0.032** 0.012 0.003 0.021 0.188*** 
BiGRU + Mean Pooling 0.130 0.109 0.082* 0.024 0.024 0.031*** 0.013* 0.003 0.023 0.183** 

Attention-
based 

SSASE 0.133 0.111 0.084* 0.025 0.023 0.032* 0.012 0.002 0.021 0.180*** 
Proposed SAAS 0.128 0.105 0.075 0.023 0.024 0.026 0.011 0.004 0.021 0.165 

SAAS achieved the highest F1-score on FP (0.823), TP (0.808), DS (0.761), and PC (0.814) 

and the highest HL on FP (0.128), UCC (0.075), DS (0.026), PC (0.011), ISA (0.021), and O 

(0.165). SAAS achieved the best precision on UCC (0.771), UAED (0.799), DS (0.843), PC 

(0.951), ISA (0.908), and O (0.803). In addition, SAAS outperformed prevailing deep learning 

models on recall on FP (0.848) and TP (0.811). The results indicate that our proposed SAAS 
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generates better representations than the benchmark methods as it jointly considering unique 

differentiating aspects of all data practice categories. Given a segment, SAAS is less likely to mis-

label the corresponding categories.  

We were also interested in examining whether how the proposed SAAS without row-wise 

attention and with a row-wise attention but no activation function performed on each category. 

Table B3 summarizes model performances of SAAS and its two variants by category. All models 

were evaluated based on precision, recall, F1-score, and HL. The highest scores are highlighted in 

boldface. 

Table B3. Performance of Ablation Analysis by Category 
Model FP 

(n=1,522) 
TP 
(n=1,186) 

UCC 
(n=632) 

UAED 
(n=231) 

DR 
(n=156) 

DS 
(n=375) 

PC 
(n=192) 

DNT 
(n=32) 

ISA 
(n=353) 

O 
(n=1,763) 

 

Precision 
 

SAAS without 
the row-wise 
attention 

0.787 0.811 0.758 0.800 0.748 0.861 0.924 0.930 0.876* 0.825 

SAAS with 
the row-wise 
attention but 
without the 
activation 
function 

0.785 0.818 0.751 0.780 0.745 0.821 0.928 0.970 0.916 0.816 

SAAS 0.801 0.810 0.771 0.799 0.622 0.843 0.951 0.960 0.908 0.803 
 

Recall 
 

SAAS without 
the row-wise 
attention 

0.835 0.789 0.550 0.684 0.155 0.676 0.727 0.736 0.838 0.555 

SAAS with 
the row-wise 
attention but 
without the 
activation 
function 

0.840 0.779 0.542 0.610 0.111 0.706 0.755 0.671 0.786 0.551* 

SAAS 0.848 0.811 0.519 0.642 0.119 0.696 0.716 0.506 0.821 0.581 
 

F1-score 
 

SAAS without 
the row-wise 
attention 

0.806** 0.796 0.629 0.723 0.240 0.751 0.809 0.807 0.854 0.656 

SAAS with 
the row-wise 
attention but 
without the 
activation 
function 

0.810 0.796 0.625 0.655 0.185 0.753 0.830 0.783 0.842 0.655 

SAAS 0.823 0.808 0.611 0.709 0.187 0.761 0.814 0.641 0.862 0.671 
 

HL 
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SAAS without 
the row-wise 
attention 

0.140* 0.109 0.073 0.022 0.023 0.026 0.011 0.003 0.023 0.169 

SAAS with 
the row-wise 
attention but 
without the 
activation 
function 

0.138 0.108 0.074 0.028 0.023 0.027 0.010 0.003* 0.024 0.169 

SAAS 0.128 0.105 0.075 0.023 0.024 0.026 0.011 0.004 0.021 0.165 
 
As shown in Table B3, SAAS outperformed its variants on the majority of data practice 

categories on F1-score (FP: 0.823; TP: 0.808; DS: 0.761; ISA: 0.862; O: 0.761). This is mainly 

because the row-wise attention can emphasize the critical semantic heads in segment embedding 

extracted by the multi-head self-attention mechanism. In addition, compared to SAASE with the 

row-wise attention but without the activation function, the results indicate that the proposed row-

wise attention operation contributes to performance improvement while increasing the number of 

trainable parameters does not necessarily improve the performance.  
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APPENDIX C: SENSITIVITY ANALYSIS OF OUR PROPOSED SAAS 

We assessed the effect of parameter variations on our proposed SAAS model. We 

examined SAAS’s sensitivity to four key sets of deep learning specific parameters: the number of 

hidden states in Bi-LSTM, the number of attention units, the number of attention heads, and the 

number of units in the dense layer of the multi-label classifier. We compared model performances 

based on micro-averaged precision, micro-averaged recall, micro-averaged F1-score, and micro-

averaged HL. The baseline SAAS implementation had 256 Bi-LSTM hidden states. It also 

contained 256 attention units to extract aspects of segments into a 30-head matrix segment 

embedding and 1024 units in the dense layer. For each SAAS variation, we changed the target 

parameter and fixed all other parameters. We present the best performance of each parameter for 

each metric in bold. Table C1 summarizes the performances of the SAAS model and its variants. 

For each set of parameters, all models were compared with the baseline model to examine the 

statistical significance. The null hypothesis assumes that there is no significant difference between 

each model and the baseline model. 

Table C1. Performance of SAAS with Parameter Variations 
Number of Hidden States in Bi-LSTM (Baseline Model: 256 Hidden States) 

Model Micro-averaged 
Precision 

Micro-averaged 
Recall 

Micro-averaged F1-
score 

Micro-averaged HL 

128 Hidden States 0.806 0.714 0.757 0.058 
256 Hidden States 0.809 0.716 0.759 0.058 
512 Hidden States 0.796* 0.722 0.757 0.059 

Number of Attention Units (Baseline Model: 256 Attention Units) 
128 Units 0.806 0.713 0.756 0.059 
256 Units 0.809 0.716 0.759 0.058 
512 Units 0.809 0.714 0.758 0.058 

Number of Attention heads (Baseline Model: 30 Heads) 
20 Heads 0.801 0.715 0.755 0.059 
30 Heads 0.809 0.716 0.759 0.058 
40 Heads 0.800 0.711 0.752 0.060 

Number of units in the Dense Layer of the Multi-label Classifier (Baseline Model: 1024 Units) 
512 Units 0.807 0.712 0.756 0.059 
1024 Units 0.809 0.716 0.759 0.058 
2048 Units 0.804 0.711 0.755 0.059 

*: Statistically significant difference at 𝑝𝑝 < 0.05 
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When the number of Bi-LSTM hidden states increased from 128 to 256, there was no 

significant difference in micro-averaged precision (between 0.806 and 0.809), micro-averaged 

recall (between 0.714 and 0.716), micro-averaged F1-score (between 0.757 and 0.759), and micro-

averaged HL (between 0.058 and 0.058). Further increasing the number of hidden states did not 

yield statistically significant performance differences in micro-averaged F1-score and micro-

averaged HL. Similarly, altering the number of attention units, attention heads, and units in the 

dense layer did not affect any of the performance metrics with statistically significant margins. 

This may suggest that SAAS model performance was not sensitive to parameter changes on the 

attention-unit, attention-head, and unit-in-the-dense-layer implementations. In particular, the 

results of the changes in the number of attention heads suggest that only a few differentiating 

aspects of a segment are needed to correctly classify the segment. 
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